

Explainable Machine Learning

Kasia Kulma, Senior Data Scientist Hannah Frick, Senior Data Scientist

Agenda

Motivation

DALEX

Mango Solutions

- Data science services, advice, training
- Cross-sector
- ~ 80 people
- London and Chippenham
- We 🧡 R, Python and Spark

Motivation

Business and Government Decisions Increasingly Rely on Machine Learning and Al

- Healthcare
- Banking
- Crime

- Education
- Recruitment

ACCURACY

TRUST

More Accurate ML Algorithms are also Less Interpretable

INTERPRETIBILITY

ACCURACY

- Overfitting & Noise
- Correlation
- Data Leakage
- Truth

Data Leakage in Action

Data Leakage in Action

Interpretable Explanations

Interpretable Models are Key in High-Stake Decisions...

- Healthcare: cancer detection
- Banking: loan lending
- Crime: detention and bail
- Education: teachers' promotion
 / redundancy
- Recruitment: interviews

Check out Weapons of Math Destruction by Cathy O'Neil!

.. And in Low-Risk Decisions, too!

- Sanity check
- Generalizability
- Fairness

 Foresight of model behaviour

 Feature and model improvement

Explainable Machine Learning and AI (XML/XAI)

Techniques in Artificial Intelligence [and Machine Learning] that (...) make model predictions easily understood by humans. It contrasts with the concept of the black box in machine learning where even their designers cannot explain why the AI arrived at a specific decision. ^[1]

[1] https://en.m.wikipedia.org/wiki/Explainable_artificial_intelligence

DALEX

DALEX: Descriptive mAchine Learning EXplanations

DALEX is a set of tools that help understand how complex models are working

Developed by Przemyslaw Biecek

Github: https://github.com/pbiecek/DALEX

Based on https://raw.githubusercontent.com/pbiecek/DALEX_docs/master/images/Explain.png

Based on https://raw.githubusercontent.com/pbiecek/DALEX_docs/master/images/Explain.png

biecek/DALEX_docs/master/images/Explain.png

Before You Start

Regression problem – predict apartment prices in Warsaw, Poland

```
library(DALEX)
```

```
library(randomForest)
```

```
# train random forest and linear model
```

```
str(apartments)
```

```
set.seed(519)
```

```
apartments_rf_model <- randomForest::randomForest(m2.price ~ ., data = apartments)</pre>
```

```
predicted_rf <- predict(apartments_rf_model, apartmentsTest)</pre>
```

```
apartments_lm_model <- lm(m2.price ~ ., data = apartments)
predicted lm <- predict(apartments lm model, apartmentsTest)</pre>
```

Start with the Explainer

Compare model performance

root mean square

sqrt(mean((predicted rf -apartmentsTest\$m2.price)^2))

sqrt(mean((predicted_lm - apartmentsTest\$m2.price)^2))

Run DALEX explainer

```
explainer lm <- DALEX::explain(model = apartments lm model,</pre>
```

data = apartmentsTest[,2:6], y = apartmentsTest\$m2.price)

```
explainer_rf <- DALEX::explain(model = apartments_rf_model,</pre>
```

```
data = apartmentsTest[,2:6], y = apartmentsTest$m2.price)
```


Start with the Explainer

DALEX explainer attaches relevant meta data to the algorithms and unifies model interfacing

> explainer_lm							
Model label: t	crain						
Model class: t	crain						
Data head :							
constructi	lon.year	surface	floor	no.rooms	district		
1001	1976	131	3	5	Srodmiescie		
1002	1978	112	9	4	Mokotow		

Based on https://raw.githubusercontent.com/pbiecek/DALEX_docs/master/images/Explain.png

Based on https://raw.githubusercontent.com/pbiecek/DALEX_docs/master/images/Explain.png

Explainer for model performance gives more information in a consistent form

The function model_performance() calculates predictions and residuals for validation data <code>apartments_test</code>

mp_lm <- model_performance(explainer_lm)</pre>

mp_rf <- model_performance(explainer_rf)</pre>

plot model performance

plot(mp_lm, mp_rf)

Based on https://raw.githubusercontent.com/pbiecek/DALEX_docs/master/images/Explain.png

Explainer for model performance gives more information in a consistent form

The function model_performance() calculates predictions and residuals for validation data apartments_test

mp_rf <- model_performance(explainer_rf)</pre>

mp_rf\$observed

mp_rf\$predicted

mp rf\$diff # predicted - observed


```
ggplot(mp rf, aes(observed, diff) ) +
```

```
stat density 2d(
```

aes(fill = ..level..),

geom = "polygon",

colour = "white") +

```
scale fill_gradient(name = "density") +
```

xlab("Observed") +

```
ylab("Predicted - Observed") +
```

```
ggtitle("Diagnostic plot") +
```

theme_mi2()

Based on https://raw.githubusercontent.com/pbiecek/DALEX_docs/master/images/Explain.png

Variable Importance

- Variable importance helps us validate the model and increase our understanding of the domain.
- The function variable_importance() provides model agnostic variable importance (as opposed to model-specific).

plot(vi_rf, vi_lm)

Based on https://raw.githubusercontent.com/pbiecek/DALEX docs/master/images/Explain.png

A single continuous variable

Partial Dependence Plots (PDP) show the expected output conditional on the selected variable.

pdp_rf <- ingredients::partial_dependency(explainer_rf,</pre>

```
variables = "construction.year", variable type = "numerical")
```

pdp_lm <- ingredients::partial_dependency(explainer_lm,</pre>

```
variables = "construction.year", variable type = "numerical")
```


Partial Dependence Plots

plot(pdp_rf, pdp_lm)

The linear model is unable to capture a nonlinear relationship between construction year and apartment price.

A single categorical variable

svd rf <- single variable(explainer rf, variable = "district", type = "factor")</pre>

svd lm <- single variable(explainer lm, variable = "district ", type = "factor")</pre>

randomForest

plot(svd_rf, svd_lm)

Can you identify the three distinct clusters?

Both models have a very similar accuracy

- Both models have a very similar accuracy
- Random forest is more accurate for lower- and mid-value flats, but not for the high-value ones

- Both models have a very similar accuracy
- RF is more accurate for lower- and midvalue flats, but not for the high-value ones
- RF correctly captured a non-linear relationships
- RF tends to under-value most expensive flats by not attributing location enough

- Both models have a very similar accuracy
- Random forest is more accurate for lower- and mid-value flats, but not for the high-value ones
- Random forest correctly captured a nonlinear relationship between the construction year and the flat price
- Still, random forest tends to under-value most expensive flats by not attributing location enough

Material / References

• Materials at

https://github.com/MangoTheCat/explainable-machine-learning-workshop

- DALEX: https://pbiecek.github.io/DALEX/
- LIME: Ribeiro et al. "Why Should I Trust You? Explaining the Predictions of Any Classifier" (ACM SIGKDD, 2016)
 - Python: https://github.com/marcotcr/lime
 - R: https://github.com/thomasp85/lime
- SHAP: Lundberg, Lee (2017). "A Unified Approach to Interpreting Model Predictions." (NeurIPS, 2017)
 - ShapleyR: https://github.com/redichh/ShapleyR
 - iml: https://github.com/christophM/iml
 - shapper: https://github.com/ModelOriented/shapper

